% ======================================================== % % Files of the Matlab programs included in the book: % % Xin-She Yang, Nature-Inspired Metaheuristic Algorithms, % % Second Edition, Luniver Press, (2010). www.luniver.com % % ======================================================== % % Firefly Algorithm by X S Yang (Cambridge University) % Usage: firefly_simple([number_of_fireflies,MaxGeneration]) % eg: firefly_simple([12,50]); function [best]=firefly_simple(instr) % n=number of fireflies % MaxGeneration=number of pseudo time steps if nargin<1, instr=[12 50]; end n=instr(1); MaxGeneration=instr(2); rand('state',0); % Reset the random generator % ------ Four peak functions --------------------- str1='exp(-(x-4)^2-(y-4)^2)+exp(-(x+4)^2-(y-4)^2)'; str2='+2*exp(-x^2-(y+4)^2)+2*exp(-x^2-y^2)'; funstr=strcat(str1,str2); % Converting to an inline function f=vectorize(inline(funstr)); % range=[xmin xmax ymin ymax]; range=[-1.5 6 -5 6]; % ------------------------------------------------ alpha=0.2; % Randomness 0--1 (highly random) gamma=1.0; % Absorption coefficient % ------------------------------------------------ % Grid values are used for display only Ngrid=100; dx=(range(2)-range(1))/Ngrid; dy=(range(4)-range(3))/Ngrid; [x,y]=meshgrid(range(1):dx:range(2),... range(3):dy:range(4)); z=f(x,y); % Display the shape of the objective function figure(1); surfc(x,y,z); % ------------------------------------------------ % generating the initial locations of n fireflies [xn,yn,Lightn]=init_ffa(n,range); % Display the paths of fireflies in a figure with % contours of the function to be optimized figure(2); % Iterations or pseudo time marching for i=1:MaxGeneration, %%%%% start iterations % Show the contours of the function contour(x,y,z,15); hold on; % Evaluate new solutions zn=f(xn,yn); % Ranking the fireflies by their light intensity [Lightn,Index]=sort(zn); xn=xn(Index); yn=yn(Index); xo=xn; yo=yn; Lighto=Lightn; % Trace the paths of all roaming fireflies plot(xn,yn,'.','markersize',10,'markerfacecolor','g'); % Move all fireflies to the better locations [xn,yn]=ffa_move(xn,yn,Lightn,xo,yo,Lighto,alpha,gamma,range); drawnow; axis off set(gcf,'Color',[1 1 1]); set(gca,'Color',[1 1 1]); im=frame2im(getframe); imB = imresize(im,[144 210]); imwrite(imB,strcat('C:/Users/Jay/Desktop/Data/Data', num2str(i),'.png')) % Use "hold on" to show the paths of fireflies hold off; end %%%%% end of iterations best(:,1)=xo'; best(:,2)=yo'; best(:,3)=Lighto'; % ----- All subfunctions are listed here --------- % The initial locations of n fireflies function [xn,yn,Lightn]=init_ffa(n,range) xrange=range(2)-range(1); yrange=range(4)-range(3); xn=rand(1,n)*xrange+range(1); yn=rand(1,n)*yrange+range(3); Lightn=zeros(size(yn)); % Move all fireflies toward brighter ones function [xn,yn]=ffa_move(xn,yn,Lightn,xo,yo,... Lighto,alpha,gamma,range) ni=size(yn,2); nj=size(yo,2); for i=1:ni, % The attractiveness parameter beta=exp(-gamma*r) for j=1:nj, r=sqrt((xn(i)-xo(j))^2+(yn(i)-yo(j))^2); if Lightn(i)=range(2), xn(i)=range(2); end if yn(i)<=range(3), yn(i)=range(3); end if yn(i)>=range(4), yn(i)=range(4); end end % ============== end =====================================