# Example of making predictions # Make a prediction with weights def predict(row, weights): activation = weights[0] for i in range(len(row)-1): activation += weights[i + 1] * row[i] return 1.0 if activation >= 0.0 else 0.0 # test predictions dataset = [[2.7810836,2.550537003,0], [1.465489372,2.362125076,0], [3.396561688,4.400293529,0], [1.38807019,1.850220317,0], [3.06407232,3.005305973,0], [7.627531214,2.759262235,1], [5.332441248,2.088626775,1], [6.922596716,1.77106367,1], [8.675418651,-0.242068655,1], [7.673756466,3.508563011,1]] weights = [-0.1, 0.20653640140000007, -0.23418117710000003] for row in dataset: prediction = predict(row, weights) print("Expected=%d, Predicted=%d" % (row[-1], prediction))