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Abstract: A theoretical description of the pulse dynamics in a mode-
locked laser including gain dynamics is developed. Relaratscillations
and frequency pulling are predicted that influence the ppEameters.
Experimental observations of the response of a mode-lodksdpphire
laser to an abrupt change in the pump power confirm that theigbeel
behavior occurs. These results provide a framework for wstaeding the
effects of noise on the spectrum of the laser.
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1. Introduction

Remarkable advances in the ability to measure and contegpliase evolution of the pulses
produced by mode-locked lasers have occurred over thedasyéars [1]. These advances
have revolutionized optical frequency metrology [2], dedloptical atomic clocks [3, 4] and
impacted high field physics [5]. Continued progress in these applications of mode-locked
lasers requires improvement in our understanding of thgiathics. Understanding the inter-
play between the pulse parameters is key to the developni@aintrol strategies and, more
fundamentally, to understanding the ultimate stabilityits due to quantum fluctuations.

The sensitivity of the pulse-to-pulse change in the cagierelope phase to the intensity was
discovered [6] and exploited for control of the offset frequay [7, 8] early in the development
of femtosecond comb technology. However it was clear theaéffect was not simply due to the
Kerr effect. There are contributions from changes in theerenequency [6, 8], which depends
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on the intensity through frequency pulling, contributidream changes in the pulse timing due
to shock [9], and modification due to dispersion managenrettté laser [10]. These studies
did not develop an understanding of the dynamical aspedtsest effects, while experimental
results only distinguished slow thermal effects from fast@n-thermal ones [8].

An accurate theoretical description of the pulse dynamitkaid efforts to improve the
feedback control of mode-locked lasers because the dysdaaome part of the transfer func-
tion of the servo loop. Furthermore, such a theoreticalmijgtszn will allow the effect of noise
on the frequency comb to be analyzed. Currently, technicsendominates, although it can
in principle be eliminated [11]. The fundamental limits Mok set by amplified spontaneous
emission (ASE), which cannot be eliminated [12]. Here, weufoon establishing the basis
from which the effects of noise can be calculated. Expertalaiaracterization of the dynam-
ics show that the dynamics of the gain medium must also baded.

2. Background

Efforts to describe the dynamics of a mode-locked laser baen based on an approach de-
scribed in a seminal paper by Haus and Mecozzi [13]. Assuthiaigonly one polarization state
plays a role and that the change of the pulse per round tripadl sso that one can replace the
discrete laser components with continuous approximatidass and Mecozzi [13] obtained a
master equation

ou(T,t) D 9?

, _ 1 9? . 2

whereTg is the laser cavity round trip timey is the complex field envelope, normalized so
that |u? equals the instantaneous powErjs a slow time corresponding tryVg, the folded
distance along the laser divided by the average group wglaridt is fast (retarded) time. We
have explicitly added a phase skl to the Haus-Mecozzi equations, so that the phase slip of
u per round trip corresponds to the actual value at low powbere nonlinear effects can be
neglected. Haus and Mecozzi assume that the dispelsion-”L is constant. We usg” to
designate the usual chromatic dispersion harid designate the roundtrip length of the laser.
Finally, g andl are linear gain and loss per round trip at the central frequehthe laser pulse,
Qg is the gain bandwidthy is the Kerr coefficient, and is the fast saturable loss (or gain)
parameter, which in a Ti:sapphire laser arises from the K& effect. We note that we have
changed the definitions &@f, y, andd from those of Haus and Mecozzi to bring the notation into
closer alignment with the majority of the literature on eptisolitons. However, like Haus and
Mecozzi, we usd /Tr and not propagation lengttas an independent variable. Consequently,
the coefficienty has units of inverse power, in contrast to the usual caseticabfiber solitons,
where it has units of inverse powerinverse length.

Equation (1) applies in the slowly-varying envelope liniit,which the bandwidth of the
laser pulse is small compared to its central frequency. Téference frequencyy, usually
referred to as the angular carrier frequency, is removeeh 10T, t), so that its spectrum is
shifted in the frequency domain towards zero frequency ks/dmount and is located in the
neighborhood of zero frequency. A complete derivation of @q in the context of optical
fibers can be found in Refs. [14, 15]. While an analogous cotaplerivation for passively
modelocked laser systems has yet to be published, the grizcessentially the same. Because
of group velocity dispersion, which is required to obtain @ad@locked pulse, the pulse’s round
trip time only equals the round trip linear dispersive dedagne frequency. In order for Eq. (1)
to hold and for the modelocked pulse intensity at equililorio be stationary at every pointtn
as a function ofl, we must choosex equal to this frequency. Otherwise, a group velocity term
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proportional tadu/dt with a real coefficient must be added to Eq. (1), or the pulserdral time
changes at a constant rate as a functioi .oThere is some freedom in our choiceafg, the
equilibrium pulse central frequency. In the laser systeamhwe are considering, it is convenient
to choosemeq = wo.

Equation (1) must be supplemented by an equation relatmgltw saturable gaig to the
pulse energw, for which Haus and Mecozzi take

Jo

=% 2
1+w/RTR’ @

g
whereqp is the unsaturated gain aRglis the saturation power. The soliton limit corresponds to
0lk1,0KYy, andg/Qé < |DJ. In this limit, Eq. (1) reduces at lowest order to the nordine
Schibdinger equation, and both the linear and nonlinear gain@swlcontributions appear as
perturbations.

The pulses are characterized by four parameters: the pudsgyav = weq+ Aw, the central
frequencyw = eq+ Aw, the central pulse time = Teq+ AT, and the phasé = Beq+ AB,
whereweq, Teq, Teq, aNd6Beq are the equilibrium values of these quantities, wiie Aw, AT,
andA#@ are their changes. Since the system is invariant under tidgohase translations, we
may without loss of generality choosgy = 0 and Beq = —6ceo(n) T /Tr, Where B¢, is the
carrier envelope offset phase shift per round trip in therdasw = wy. We note thaBbgeo # 6Oy
in general because of the nonlinear phase shift. This ctaiphase, which is standard [13,
16, 17], greatly simplifies perturbation theory. We noterference that Haus and Mecozzi’'s
p corresponds te-Aw.

In a laser with only one pulse in the cavity, the optical coimk khape is completely deter-
mined by the evolution of the four pulse parameters. One sarfg. (1) and Eq. (2) to derive
a linear equation governing their evolution including m@ois

dv

a7 = A-v+S, 3)
wherev = (Aw,Aw, AT,AB)! is the vector of the changes in the four pulse parameterg(sup
scriptt denotes the transpose). The quaniitig the 4x 4 matrix of the constant coefficients that
govern the linear response of each parameter to changdahkén igself or the other parameters,
while S is the vector of noise sources [13], which accounts for teethrand quantum noise.
One may now go on to calculate the timing and phase jitter §b8] the line widths [18, 19].

At this point, we confront the difficulty that the elements/Afwhich depend on both the
parameters in Eq. (1) and the pulse shape (hyperbolic-sraronstanD, but closer to Gaus-
sian when the system is dispersion-managed), are knowrsgtjbalitatively. This difficulty is
particularly acute foAy, which depends on the unsaturated gain, the saturationrpamethe
nonlinear Kerr coefficient — none of which are easily measlardndeed, in Ti:sapphire lasers
with soft Kerr lens modelocking, the variation of the fadusable gain with power is not linear
as implied by Eq. (1) [20]. Moreover, Eq. (1) implies that finequency pulling coefficients
Awpx (Wherex is g or w) are zero, which the experiments to be described shorthy &haot the
case. Thus, an accurate calculation of the line shape bastisapproach is not possible.

To overcome this difficulty, we directly measure the eleraaritthe matrixA. These exper-
iments not only provide the data that are needed to calcthatéundamental line shapes; in
addition, they allow us to determine the values of imporfdmysical parameters that are needed
to calculate the noise sourc8$ut are difficult to directly measure. These measuremestd yi
important insights into the laser behavior that point thg teavard more complete and accurate
underlying physical models than Eq. (1).
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3. Experiment

To measure the elements of matAixwe abruptly changed the pump power and measured the
output signal power, the fluorescence from the laser cryestal the spectral shift in a Kerr-lens
mode-locked Ti:sapphire laser with 15 fs FWHM pulses, a ligpetrate of 94 MHz, and an
intracavity pulse energy in the neighborhood of 55 nJ. Wewstypical results in Fig. 1. The
emitted fluorescence approximates the gain of the lasee philg is not exactly proportional
to it; in particular, the phase of the fluorescence is not #mesas the phase of the gain. The
pump power was modulated by an acousto-optic modulator avigtvitching time of roughly
200 ns. The modulation was a square wave with a period of 10nahsaepth of about 1%.
We averaged approximately 100 traces using a digital oscitipe. To measuesw, the laser
intensity, spectrally resolved with a monochromator, wasasured using a photodiode. We
measure time traces for a range of wavelengths, coveringritie laser spectrum. The central
frequency is approximated as the centroid of the frequepegtsum.

361.04

0@ b) —~——————
§ . Fluorescence — 1 Central frequency
> T 1
wn = 360.5-.

Qs [T 5
N Pump intensity c J
g S 360.0
= g -~
zo 0.984 Intensity ™ !
g ’__/
0 2 _4 6 8 10 0 2 4 6.8 10
Time (us) Time (ps)

Fig. 1. Experimental data showing the (a) laser intensity and fluores@amt (b) central

frequency as a function of time following a sudden drop in the pump pdewves are for

pump powers of 5.1 W (black), 5.3 W (red) and 5.5 W (blue). Theesi(a) are normalized
to the value prior to the step in pump power. In (a) the pump intensity is alsasfuashed

line).

Two salient points are evident. First, there can be longdivelaxation oscillations. Spon-
tanteous oscillations in the intensity and central fregydrave been observed previously [21],
although the spontaneous nature of them prevented exéeasalysis. Equation (2) is inade-
quate to describe this behavior and must be replaced wittiythemical equation

dg _g-9 1 gw
dT Tt Tt F’STR7

(4)

where 15 is the fluorescence lifetime of the medium [22], and we areiagyy that the
Ti:sapphire crystal may be treated as an ideal four-levslesy, so thag O Ny, the popula-
tion of the upper lasing level. As a consequence, Eq. (3) adimnédnsional system is incom-
plete. It must be replaced by a similar 5-dimensional systemhich the vectov becomes
(Aw, Aw, AT,A0,AQ)!, whereAg is the change in the gain, ardbecomes a 5 5 matrix. Sec-
ond, there is significant frequency pulling. Frequencyipglis not included in Eq. (1), which
must be appropriately modified.
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These measurements have significant theoretical immitstie can infefy, Ag, and
Awx, Wherex =w, @, T, 0, org. We can also infeN,, the number of atoms in the upper lasing
level. This parameter is important in determini@gFinally, we may infer minimal modifica-
tions to (1) that incorporate frequency pulling, althoulgase modifications are not unique. In
principle, if the gain and loss as a function of frequencyesarown, we could directly calcu-
late the frequency-pulling coefficients. However, the gaial loss as a function of frequency
are difficult to measure and not well known.

Measurements ok andAgy require a different, more sophisticated experimentalriegie
that will be the subject of a later publication. In relatedkydiang.et al. [23] discussed a 5 5
system in the context of semiconductor lasers, and Matak,[24] discussed the transient gain
dynamics in a Ti:sapphire laser and the importance of adomyfor the variation of the cavity
lifetime 1, with w. Paschotta [25, 26] has described a computational appfoachlculating
the noise statistics in which the discrete laser comporetkept, and the evolution of the
dispersive continuum as well as the pulse parameters @mfed.

4. Gain and intensity dynamics

On the long time scale, the evolution of the pulse energwisrgby

aw_ w  2gw
aT  To(w)  Tr'

®)

While 1pn can be related to the parameters of an underlying physicdehsuch as Eq. (1),
it is not useful to do so at this point. We note however thagtincludes nonlinear contribu-
tions from the fast saturable gain as well as linear contiobg from the slow gain and loss.
Linearizing Egs. (4) and (5) about equilibrium valugg andweg, and using the relationship
1/Tph = 20eq/ Tr, Which comes from the equilibrium solution to Eq. 5, we findiatipns of
motion for the deviations from equilibrium

dA
—d_l\_N + AmAW + AygAg = 0,

6)
dAg A (
ar + AgnAW - AggAg = T

where Awy = (AT, /dW)Weq, Aug = —2Weq/Tr, Agw = (Geq/T1)(1/PsTr), and Agg = (1+
Weq/PsTr)(1/1¢). All other Ay, andAgy equal zero.

The abrupt change in pump power causes a sudden change imstiteiated gaingo, lead-
ing to the damped oscillations shown in Fig. 1. The dampitgyigegiven by = (Aww+Agg)/2
and the oscillation frequency is given byfs. = —AwgAgw + AmAgg — a>. We show measured
wohsc and a in Fig. 2 as a function of the pump power for both modelocked eontinuous
wave (cw) operation. These values are obtained by explisidlving Eq. (6) and fittingupsc
anda to the analytical form, shown in Appendix A, using the metloddeast squares. As the
pump power varies between 4.7 and 5.4 W, we find thatdgatvaries from 26 x 10° rad/s to
2.8 x 10° rad/s andx varies from 02 x 10° s~1 to 1.0 x 10° s~ for the modelocked operation.
The variation ofwysc in the cw case is qualitatively similar to the variation ir tmodelocked
case, but the variation af differs significantly, being far more gradual.

It is useful to rewrite Eq. (6) in terms of the photon numbks = w/hw and the number of
atoms in the upper lasing levidh = (V /olg)g, whereh'is Planck’s constany is the effective
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Fig. 2. Measured oscillation frequency (filled circles, left axis) andglagrate (open cir-
cles, right axis) as function of pump power for mode-locked (red)am (black) operation
of the laser.

gain volume]q is the effective gain length, aralis the gain cross section. We then find
daNz _ <1 1 Noheg
dT Tt Tph Noeq

-1

1
) (ANZ — ANzo) + ?hANph7
p
(7)

ANy,

whereANyq indicates the abrupt change W3 corresponding tad\go, andNppeq and Ny eq in-
dicate the equilibrium photon number and upper state ptipalarespectively. Ignoring the
damping contributions, we find thatAwgAgw = (1/Tph)?(Npheq/N2,eq), from which we obtain
the important result,

Noeq 1 B

Noheq  —AwgAguTsy
where we used the experimental value for the cavity lifetigie= 0.1 us, and we may infer
(fA\,\,gAgW)l/2 ~ 2.8 x 10° rad/s by using this value and showing that it produces thiatian
of tsc Shown in Fig. 2. Usingveq = 55 nJ andueq = 2.3 x 10'° rad/s, we obtaitNgh eq= 2.3 x
10 andNp eq= 2.9 x 10'2. Using the expressiofgg = (1/71) + (1/Tpn) (Npheq/N2,eq) and the
measured valugs = 2.5 us, we findAgg = 1.2 x 10° s1, and we also find thafiy, = 20 — Agq
varies from—0.8 x 10° s~ at a pump power of 4.7 W to.8x 10° s~ at a pump power of 5.4
W. We note that the laser remains stable whAgR becomes negative, although the relaxation
oscillations become long-lived. This behavior is very @iént from the cw behavior shown
in Fig. 2 and indicates that relaxation oscillations mayrhpartant in modelocked lasers even
when they are notimportant in the same laser generatingpti ljJsing(—AWgA@,W)l/2 =28x
1P rad/s and the relationshi@Zs. = —AuwgAgw + AmAgg — a2 implies thatwsc varies from
2.6 x 10° rad/s to 28 x 10° rad/s, consistent with Fig. 2. Using the relatipgy = —2weq/Tr
and the measured valugq = 55 nJ, we infeA,g = —11 Js !t andAgy = 7.1 x 10t J-1s7L,

13, (8)
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5. Frequency pulling
The frequency pulling shown in Fig. 1 is governed by the eiquat

%#E+AWAW+AWA9+AMAW:O, ©)
whereAgr = Agg = 0. We determine th@gy from the experimental data by using the method
of least squares to fit the analytical form of the solution tp ), shown in Appendix A. We
find App = 1.2 x 10° s71, Agg = —3.0 x 10° THz/s, andAgy = 1.2 x 10° THz/(nJs) at 5.1 W
pump power.

The physical origin of the gain-induced frequency pullindhe finite bandwidth of the loss
[13]. As the gain changes, the equilibrium frequency charagel the pulse’s central frequency
is pulled toward the new equilibrium. The physical origintbé pulse-energy-induced fre-
guency pulling is asymmetry in the gain and loss. As the failgergy changes, its bandwidth
also changes and the asymmetry then shifts the locationeoédhilibrium. Neither of these
effects are included in Eq. (1). We may include them in thetlitmat the pulse bandwidth is
small compared to the gain and loss bandwidths by adding@ dnder Taylor expansion of
the gain and loss profiles to Eq. (1). In the frequency donthagaing{w) and the los$(w)
become

~ 0) |, AL 12 2,1@3 3
§(w) = 9% +gVw+ 59?0 + 2w’

i © L1t 11?1 1133 (0

[(w)=1" +1 w+2I w +6I w>,
where w indicates the change in frequency with respect to the cafinéguencywy, so that
the actual frequency is given byy + w. The coefficientsg™ and (™ indicate them®
derivatives of the gain and loss with respect to frequencigh\this expansion, the opera-
tor —I +g[1+ (1/Q3)d?/0t? is replaced byjg® — 1] +i[g® —1M)a/at — (1/2)[g? —
11292 /0t2—i(1/6)[g'® —13]3/t3. Changes in the gain will produce an additional contribu-
tion ofing(Y 9 /ot at lowest non-trivial order. Identifying/2)[g(? —12] = QZ, we see that we
are adding an additional perturbation to Eq. (1) of the f&foj = i[g® —1M]du/dt —i[g® —
I(3)]03u/0t3+iAg(l)du/at. Since our system is dispersion-managed, the pulses arly nea
Gaussian in shape. So, it is appropriate to use a perturbaxipansion based on Gaussian-
shaped pulses. We show in Appendix B that

_ 3Bre_ @1 _27mgy 1

o= [ 1 e+ Y
wheretpwynm is the full width half maximum pulse duration of 15 fs. Assmgiwith Haus
and Mecozzi [13] a nominal gain bandwid®y = 1.6 x 10'° rad/s and using the experimen-
tally determined value ofgg, we obtaing®Qq/g(© = 0.42, which is consistent with the loss
bandwidth peak lying below the gain bandwidth peak. Usirgdakperimental value dhgw,

we also findg® —1®]Q3 = —4.5, indicating a substantial asymmetry over the nominal gain
bandwidth. We note that these inferences are not uniques ey assume that higher orders
of the Taylor expansion of the gain and loss curves do notitwte. Nonetheless, these results
show that it is possible to infer corrections to Eq. (1) frdra neasurements &f

6. Conclusion

In summary, we have experimentally measured some elemettig imatrixA that describes
the dynamics of the pulse parameters in a Ti:sapphire macestl laser. We have shown that it
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is necessary to take into account the gain dynamics anddregupulling. Once that is done, it
is possible to measure all coefficients of the fokg, Agx, andAgy. One may use these results
to infer Nz, which is needed to determine the strengths of the quantuse smurces. The
next step, measurement Afx andAgy, is underway. This information can be used with a full
perturbation theory for this system with realistic pulsayss that take into account dispersion
management to yield a complete calculation of the entikedimape.

We thank Jun Ye for a critical reading of the manuscript.\llKs supported by the National
Academy of Sciences/National Research Council postdald&lfows program. S.T.C. is a staff
member in the NIST Quantum Physics Division.

Appendix A. Solutionsto Egs. (6) and (9)

We may obtain the solution to Eq. (6) using the method of viaraof parameters, assuming
thatAgo changes instantaneouslytat O to its final value. The solution is:

_ Awg Ago _ _aT .
Aw = Bt @ Tr {1 e €O toscl ) + : (GoscT )| ¢,
Ag = —e co -T)+ ——sin T A.l
g= wosc+az It  WoscT ) oo (@WoscT) (A1)
1 Ado o7
——e sin 1),
UWosc Tf (@osc )

which may be verified by substitution.
We obtain the solution to Eqg. (9) by first substituting Eq.10Ainto Eq. (9). We next rewrite
Eq. (9) in the form,

dAwexp(AgwT) o (AwwAwg — Angww) %
dr B 0‘)gsc"‘ a? Tf
x {exp(ApwT) — exp[— (0 — Apm) T | cOS woscT)
_w%scexp[—(a — Apw) T] sin(woscT ) }

- AT?O‘EXP[ (0 — Agw)T| sin(aoscl).  (A.2)

Defininga = a — Agw, We integrate this equation to obtain

A= 1 exp(—AwoT))

(AwWAWg—Angvwv) Ago{ 1
Wes+ a2 Aow

1 Wi.—aa

 Wosc Ws+ a2

a+a
m[exp( ApwT) — exp(—aT)cos(woscT)]}

1 Ago { o
Wosc Tt sc"’ a?

exp(—aT)sin(twoscl )

+ Aw exp(—aT)sin(twoscl )

wg + 5 [eXp(—ApwT) — exq_aT)Cos(QbscT)]}- (A.3)
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Appendix B. Generalized Perturbation Theory

Perturbation analysis is a critical tool in the study of $tpmrise lasers, and it has been applied to
a wide variety of problems [19]. A key difficulty with the wotk date is that it uses traditional
soliton perturbation theory that assumes that at zero dfdepulses are hyperbolic-secant
shaped. In fact, virtually all of today’s short-pulse lasgstems are dispersion-managed, and
the pulses are close to Gaussian shaped. Often, the treditipproach yields excellent agree-
ment between theory and experiment [27]. However, ther@matable exceptions, such as the
calculation of the carrier-envelope phase shift in whiahttfaditional approach yields qualita-
tively incorrect answers. (Compare [9] and [10].) This agamh is unreliable and an approach
that can incorporate the correct zero-order pulse shapeeidad.

A key difficulty with developing perturbation theory for thmilses in dispersion-managed
systems is that a zero-order averaged equation is not digrerailable. Hauset al. [28] pro-
posed an equation in which the time variable appears ettplibut as Smithgt al. [29] first
pointed out, this equation does not scale correctly withpilee energy. The explicit appear-
ance of the time variable breaks the physically-required-peder time-invariance symmetry.
Hence, this equation is not suitable as the starting poinafeerturbation analysis. Ablowitz
and Biondini [30] and Gabitov and Turitsyn [31] have deriiategro-differential equations
that are non-local in time. These can be used as the basisplentarbation theory. However,
they only apply when the map strength is large, the variation of the dispersion is large
compared to the average. Typically, the map strengths er Eysstems are moderate, and the
ratio of the variation to the average is close to 1. Moreowaee would like to have an ap-
proach that can be applied to computational studies likeetlad Paschotta [25, 26] that take
into account the discreteness of the laser componentsntitiat all clear that it is possible to
obtain a closed-form zero-order equation in this case,enihils certainly possible to obtain
computationally the equilibrium pulse shape. In this case, would like to be able to use the
computationally-determined pulse shape as the startiig fov a perturbation analysis.

Here, we report that we have circumvented the difficultiest glescribed and have devel-
oped a perturbation theory that allows one to use empiyicatlcomputationally-derived pulse
shapes even when there is no closed-form expression fonderlying averaged equations, as
long as certain physical and mathematical assumptions tateawell supported by experi-
mental, computational, and theoretical work to date — aryeld. We will not discuss all the
details here, reserving that for a later publication. Hosveall the assumptions that are used in
the theoretical development are presented here, and tleéogevent is complete, albeit brief.
Likewise, we do not give extensive examples of the theopfdiaation here. Instead, we show
how the apparatus of the theory can be used to extract thi oestrequency pulling in the
main text, which is all that is needed for this paper.

We begin by assuming that we have model equations that gdhertight evolution in
the cavity and are periodic in the folded tinfe i.e, TrOU(T,t)/0T = .Z[u(T,t)]. While
Eqg. (1) is an example of just such a model, the computatiormlainof Paschotta [25, 26]
is another example that consists of discrete portions ¢enated together. We assume that
in the absence of gain and loss, the model equations haveienaty short-pulse solution
uo(T,t) that depends only on the four parametersw, 7, and 6. Gain and loss are needed
to set the equilibrium values aoff and @, and loss is needed to damp the continuum radi-
ation, but in the dispersion-managed soliton regime in whictually all of today’s short-
pulse lasers operate, it is appropriate to treat these tperiarbatively. In addition, we will
assume that the underlying equations are time- and phesgant at zero order, so that
u(T,t;w, @, 1,0) = up(T,t — T;w, @) exp(if). While it is not necessary for our development,
we will also assume that at zero order the underlying equatwe frequency-invariant at zero
order. Itis not difficult to find model systems with no gain @s$ that violate this assumption. If
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higher-order dispersion for example is included in the zender system, then this assumption
is not valid. However, this assumption holds at zero ordeh@dispersion-managed systems
that are of interest to us here, and we findT,t) = up(T,t — T;w)exg—iAm(t — 1) +i6],
where we have used the assumptioy= weq.

If we now write u(T,t) = up(T,t) +Au(T,t) and we linearize# [u] about the equilibrium
(periodically stationary) solutiony(T,t), we obtain a linear Bloch-Floguet equation with peri-
odically varying coefficients. Starting at any locationtie faser, we may integrate this equation
over one round trip and divide Bl to obtain an averaged equation that governs the slow evo-
lution and that may be written in the form

JAu

oT
where.# and .4 are operators that may be non-local in time. In the case ohtimdinear
Schivdinger equation with constant dispersios, = (D/2)32/dt? + 2y|ug|? and.#" = yu3. In
keeping with our assumption that the zero-order system di@sim or loss, we assume that
is a Hermitian operator and” is symmetric, by which we mean that given ax{y) andv(t),

= i [uo]Au+i.4 [ug]Au*, (B.1)

[ vt et = -, [t it
/:: dtl/:; dto v (tg) A (t1, t2)u" (t2) = /j; dt, /jo Ao U (1), (t2, t)V* (). (B.2)

The connection to gain and loss of this assumption may nohbeely obvious to the reader,
and it will be elucidated elsewhere in a full discussion oftyation theory. However, the
reader can easily verify that a vast number of equations mdtlyain and loss satisfy these
conditions once linearized, including all equations ofctical interest known to the authors,
such as the nonlinear Sdtinger equation, the Ablowitz-Biondini equation [30] tlgmverns
dispersion-managed solitons, and the equation proposéthbg,et al. [28]. Equations with
any order of dispersion and arbitrary (non-singular) needrities,.e., |uj>u — F[|u|?]u, also
satisfy these conditions once linearized.

We now define an inner produt|u) = (1/2) [ dt (vfu+ vu*) and note that ifi satisfies
Eqg. (B.1), thernv = iu satisfies the dual equation

ov
oT
Any solution to Eqg. (B.1) may be writteAu = uyAw + UgADo + U AT + UgAB + Aug, where
Uy = dup/d%, x=Ww, @, T, or B, andAu, is a dispersive wave continuum. We first have the
important result that since thg satisfy Eq. (B.1)vx = iux must satisfy the dual equations.
Second, we may shoywy|Au:) = 0, using an approach that is analogous to the approach used
in traditional soliton perturbation theory [32]. Thus byevating with the four(vx| on any
perturbed equation, we may find the effect of the perturbatio the four soliton parameters,
just as in traditional soliton perturbation theory.
Given an arbitrary pulse shapeg, the (v|uy) are non-zero in general for all combinations
of x andy. However, in the special case in which the pulses are synuradioutt — T and are
entirely in one phase — as is the case for both standard apdrdisn-managed solitons at
their point of minimum compression — then we fifg|uy) = 0 whenx # y. In practice, the
point of minimum compression is arranged to be at the exitaniof the laser, so that is the
point at which the pulses are observed.
We now apply this general theoretical apparatus to Gaussiaped pulses, which com-
putational and experimental studies have demonstrated exeellent approximation to the

i [Uo]v— i U]V (B.3)
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true pulse shape. In principle, we could also use the exantpatationally-determined pulse
shapes. We consider the perturbations that lead to fregyeriing,

. ou i d3u 1) 0u
-ifo 175 g O e e
The equilibrium pulse shape is given by(t) = Aexp[—(t — T)%/2t3] exp—iAm(t — 1) +i6).
We must now relaté andty, to the pulse energy. Here, we may appeal to the computationally-
determined relations [33, 34] in a system with two dispersiedia of length&; andL, with
dispersiong3; andp; and an average dispersiff}, = (B;/L1+ B85L2)/(L1+L>). It was shown
thatw = (r/tp)(1+ s/tp), wherer = 2|B4|(L1 +Lo)/y ands = 0.09/(8; — Bx,)L1 — (B —

2 )Lo|? [33, 34]. We also haver = /TiA%tp, which allows us to relaté to w. We now find,

1 t—1 .
Uy = W Cy(tp) — Cz(tp)(t)l (t), Ug=—i(t—T)up(t),
. P (B.5)
—-T .
Ur = —5~Uo(t), Ug = ilo(t),
p
along with the duals,
2it—1
Viy = 2Up(t), Vg = ————Uo(t),
w tp
(B.6)
2 2i t—1)2
Vr = Vv(t —T)Uo(t), Vo= lcl( p)— Cz(tp)(t%)] Uo(t),
where i i
1+3s/t, 1+s/ty
The duals are chosen so tHat|ux) = 1. Operating orP[up] with (vg|, we obtain
dAw 1 1 1 Ag(l)
— g W] =L Z1g® 13 =
R [g ! } 2 *2 {g ! } t3 * 2 (B-8)

Because of the modelocked pulse’s finite bandwidth and thenasd asymmetry of the gain,
which appears in the third-derivative term, the pulse will reside at the peak of the combined
gain-loss curve, and its derivative is not zero whe#: 0. In order to enforce the condition that

dAw/dT = 0 at equilibrium, we must sdg® — V] = —[g® — 1] /43 .. from which we
find
d\w 1 1 1\ AgW
=~ | g® e =
R~ a o -1 (tgeq t2> MY ©9)
_ 1 @] B9 |
= o5 (97 1 Ato+ S
P p
Finally, using the relationAt, = (dtp/dw)Aw = —[(tp/W)(1+s/t3)/(1+ 5s/t})] andAgH) =

(W /g@)Ag, we conclude

1 1+s/td 1 g
Ay = — [g<3> _ <3)} p 9

— P Apg= o (B.10)
2Trtf 1+5s/t] 97 Twt2g®
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To arrive at the expressions in the main text, we substigutetrwim / [2v/In2] = 0.600GrWHM.
Using the expression from [333/t) = 0.7|(B; — Ba)L1 — (B5 — Bav)L2|?/tAwmwm, as well as
the result from [35] that fotrwim = 15 fs, we have(B) — Bi)L1 — (BY — B&,)L2| = 60 <,
we finds/ty = 0.05 and(1+s/tg) /(14 5s/tj) = 0.84.

We note that if the traditional perturbation theory is ugbd,coefficient 3.23 in the expres-
sion forAgw becomes 3.00 and the coefficient 2.77 in the expressiofgdgbecomes 2.07. So,
as is often the case, the traditional theory agrees well thgtgeneralized approach described
here. However, there is no compelling reason to use thetitradl approach. The generalized
approach is no more difficult to apply than the traditiongbraach and makes use of the true
zero-order pulse shapes with whatever exactitude the gmohbt hand requires.
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