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behavior occurs. These results provide a framework for understanding the
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1. Introduction

Remarkable advances in the ability to measure and control the phase evolution of the pulses
produced by mode-locked lasers have occurred over the last few years [1]. These advances
have revolutionized optical frequency metrology [2], enabled optical atomic clocks [3, 4] and
impacted high field physics [5]. Continued progress in thesenew applications of mode-locked
lasers requires improvement in our understanding of their dynamics. Understanding the inter-
play between the pulse parameters is key to the development of control strategies and, more
fundamentally, to understanding the ultimate stability limits due to quantum fluctuations.

The sensitivity of the pulse-to-pulse change in the carrier-envelope phase to the intensity was
discovered [6] and exploited for control of the offset frequency [7, 8] early in the development
of femtosecond comb technology. However it was clear that the effect was not simply due to the
Kerr effect. There are contributions from changes in the center frequency [6, 8], which depends
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on the intensity through frequency pulling, contributionsfrom changes in the pulse timing due
to shock [9], and modification due to dispersion management in the laser [10]. These studies
did not develop an understanding of the dynamical aspects ofthese effects, while experimental
results only distinguished slow thermal effects from faster non-thermal ones [8].

An accurate theoretical description of the pulse dynamics will aid efforts to improve the
feedback control of mode-locked lasers because the dynamics become part of the transfer func-
tion of the servo loop. Furthermore, such a theoretical description will allow the effect of noise
on the frequency comb to be analyzed. Currently, technical noise dominates, although it can
in principle be eliminated [11]. The fundamental limits will be set by amplified spontaneous
emission (ASE), which cannot be eliminated [12]. Here, we focus on establishing the basis
from which the effects of noise can be calculated. Experimental characterization of the dynam-
ics show that the dynamics of the gain medium must also be included.

2. Background

Efforts to describe the dynamics of a mode-locked laser havebeen based on an approach de-
scribed in a seminal paper by Haus and Mecozzi [13]. Assumingthat only one polarization state
plays a role and that the change of the pulse per round trip is small, so that one can replace the
discrete laser components with continuous approximations, Haus and Mecozzi [13] obtained a
master equation

TR
∂u(T, t)

∂T
=

[

−iθsl + i
D
2

∂ 2

∂ t2 − l +g

(

1+
1

Ω2
g

∂ 2

∂ t2

)

+(iγ +δ )|u(T, t)|2
]

u(T, t), (1)

whereTR is the laser cavity round trip time,u is the complex field envelope, normalized so
that |u|2 equals the instantaneous power,T is a slow time corresponding toz/v̄g, the folded
distance along the laser divided by the average group velocity, andt is fast (retarded) time. We
have explicitly added a phase slipθsl to the Haus-Mecozzi equations, so that the phase slip of
u per round trip corresponds to the actual value at low power, where nonlinear effects can be
neglected. Haus and Mecozzi assume that the dispersionD = −β ′′L is constant. We useβ ′′ to
designate the usual chromatic dispersion andL to designate the roundtrip length of the laser.
Finally, g andl are linear gain and loss per round trip at the central frequency of the laser pulse,
Ωg is the gain bandwidth,γ is the Kerr coefficient, andδ is the fast saturable loss (or gain)
parameter, which in a Ti:sapphire laser arises from the Kerrlens effect. We note that we have
changed the definitions ofD, γ, andδ from those of Haus and Mecozzi to bring the notation into
closer alignment with the majority of the literature on optical solitons. However, like Haus and
Mecozzi, we useT/TR and not propagation lengthz as an independent variable. Consequently,
the coefficientγ has units of inverse power, in contrast to the usual case in optical fiber solitons,
where it has units of inverse power× inverse length.

Equation (1) applies in the slowly-varying envelope limit,in which the bandwidth of the
laser pulse is small compared to its central frequency. Thisreference frequencyω0, usually
referred to as the angular carrier frequency, is removed from u(T, t), so that its spectrum is
shifted in the frequency domain towards zero frequency by this amount and is located in the
neighborhood of zero frequency. A complete derivation of Eq. (1) in the context of optical
fibers can be found in Refs. [14, 15]. While an analogous complete derivation for passively
modelocked laser systems has yet to be published, the process is essentially the same. Because
of group velocity dispersion, which is required to obtain a modelocked pulse, the pulse’s round
trip time only equals the round trip linear dispersive delayat one frequency. In order for Eq. (1)
to hold and for the modelocked pulse intensity at equilibrium to be stationary at every point int
as a function ofT , we must chooseω0 equal to this frequency. Otherwise, a group velocity term
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proportional to∂u/∂ t with a real coefficient must be added to Eq. (1), or the pulse’scentral time
changes at a constant rate as a function ofT . There is some freedom in our choice ofϖeq, the
equilibrium pulse central frequency. In the laser system that we are considering, it is convenient
to chooseϖeq = ω0.

Equation (1) must be supplemented by an equation relating the slow saturable gaing to the
pulse energyw, for which Haus and Mecozzi take

g =
g0

1+w/PsTR
, (2)

whereg0 is the unsaturated gain andPs is the saturation power. The soliton limit corresponds to
g, l ≪ 1, δ ≪ γ, andg/Ω2

g ≪ |D|. In this limit, Eq. (1) reduces at lowest order to the nonlinear
Schr̈odinger equation, and both the linear and nonlinear gain andloss contributions appear as
perturbations.

The pulses are characterized by four parameters: the pulse energyw = weq+∆w, the central
frequencyϖ = ϖeq+ ∆ϖ , the central pulse timeτ = τeq+ ∆τ, and the phaseθ = θeq+ ∆θ ,
whereweq, ϖeq, τeq, andθeq are the equilibrium values of these quantities, while∆w, ∆ϖ , ∆τ,
and∆θ are their changes. Since the system is invariant under time and phase translations, we
may without loss of generality chooseτeq = 0 andθeq = −θceo(ω0)T/TR, whereθceo is the
carrier envelope offset phase shift per round trip in the laser atω = ω0. We note thatθceo 6= θsl

in general because of the nonlinear phase shift. This choiceof phase, which is standard [13,
16, 17], greatly simplifies perturbation theory. We note forreference that Haus and Mecozzi’s
p corresponds to−∆ϖ .

In a laser with only one pulse in the cavity, the optical comb line shape is completely deter-
mined by the evolution of the four pulse parameters. One can use Eq. (1) and Eq. (2) to derive
a linear equation governing their evolution including noise,

dv
dT

= −A ·v+S, (3)

wherev = (∆w,∆ϖ ,∆τ,∆θ)t is the vector of the changes in the four pulse parameters (super-
scriptt denotes the transpose). The quantityA is the 4×4 matrix of the constant coefficients that
govern the linear response of each parameter to changes in either itself or the other parameters,
while S is the vector of noise sources [13], which accounts for technical and quantum noise.
One may now go on to calculate the timing and phase jitter [13]and the line widths [18, 19].

At this point, we confront the difficulty that the elements ofA, which depend on both the
parameters in Eq. (1) and the pulse shape (hyperbolic-secant for constantD, but closer to Gaus-
sian when the system is dispersion-managed), are known at best qualitatively. This difficulty is
particularly acute forAww, which depends on the unsaturated gain, the saturation power, and the
nonlinear Kerr coefficient — none of which are easily measurable. Indeed, in Ti:sapphire lasers
with soft Kerr lens modelocking, the variation of the fast saturable gain with power is not linear
as implied by Eq. (1) [20]. Moreover, Eq. (1) implies that thefrequency pulling coefficients
Aϖx (wherex is g or w) are zero, which the experiments to be described shortly show is not the
case. Thus, an accurate calculation of the line shape based on this approach is not possible.

To overcome this difficulty, we directly measure the elements of the matrixA. These exper-
iments not only provide the data that are needed to calculatethe fundamental line shapes; in
addition, they allow us to determine the values of importantphysical parameters that are needed
to calculate the noise sourcesS but are difficult to directly measure. These measurements yield
important insights into the laser behavior that point the way toward more complete and accurate
underlying physical models than Eq. (1).
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3. Experiment

To measure the elements of matrixA, we abruptly changed the pump power and measured the
output signal power, the fluorescence from the laser crystal, and the spectral shift in a Kerr-lens
mode-locked Ti:sapphire laser with 15 fs FWHM pulses, a repetition rate of 94 MHz, and an
intracavity pulse energy in the neighborhood of 55 nJ. We show typical results in Fig. 1. The
emitted fluorescence approximates the gain of the laser pulse, but is not exactly proportional
to it; in particular, the phase of the fluorescence is not the same as the phase of the gain. The
pump power was modulated by an acousto-optic modulator witha switching time of roughly
200 ns. The modulation was a square wave with a period of 10 ms and a depth of about 1%.
We averaged approximately 100 traces using a digital oscilloscope. To measure∆ϖ , the laser
intensity, spectrally resolved with a monochromator, was measured using a photodiode. We
measure time traces for a range of wavelengths, covering theentire laser spectrum. The central
frequency is approximated as the centroid of the frequency spectrum.
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Fig. 1. Experimental data showing the (a) laser intensity and fluorescence and (b) central
frequency as a function of time following a sudden drop in the pump power. Curves are for
pump powers of 5.1 W (black), 5.3 W (red) and 5.5 W (blue). The curves (a) are normalized
to the value prior to the step in pump power. In (a) the pump intensity is also shown (dashed
line).

Two salient points are evident. First, there can be long-lived relaxation oscillations. Spon-
tanteous oscillations in the intensity and central frequency have been observed previously [21],
although the spontaneous nature of them prevented extensive analysis. Equation (2) is inade-
quate to describe this behavior and must be replaced with thedynamical equation

dg
dT

=
g0−g

τ f
− 1

τ f

gw
PsTR

, (4)

where τ f is the fluorescence lifetime of the medium [22], and we are assuming that the
Ti:sapphire crystal may be treated as an ideal four-level system, so thatg ∝ N2, the popula-
tion of the upper lasing level. As a consequence, Eq. (3) as a 4-dimensional system is incom-
plete. It must be replaced by a similar 5-dimensional systemin which the vectorv becomes
(∆w,∆ϖ ,∆τ,∆θ ,∆g)t , where∆g is the change in the gain, andA becomes a 5×5 matrix. Sec-
ond, there is significant frequency pulling. Frequency pulling is not included in Eq. (1), which
must be appropriately modified.
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These measurements have significant theoretical implications. We can inferAwx, Agx, and
Aϖx, wherex = w, ϖ , τ, θ , or g. We can also inferN2, the number of atoms in the upper lasing
level. This parameter is important in determiningS. Finally, we may infer minimal modifica-
tions to (1) that incorporate frequency pulling, although these modifications are not unique. In
principle, if the gain and loss as a function of frequency were known, we could directly calcu-
late the frequency-pulling coefficients. However, the gainand loss as a function of frequency
are difficult to measure and not well known.

Measurements ofAτx andAθx require a different, more sophisticated experimental technique
that will be the subject of a later publication. In related work, Jiang,et al. [23] discussed a 5×5
system in the context of semiconductor lasers, and Matos,et al. [24] discussed the transient gain
dynamics in a Ti:sapphire laser and the importance of accounting for the variation of the cavity
lifetime τph with w. Paschotta [25, 26] has described a computational approachfor calculating
the noise statistics in which the discrete laser componentsare kept, and the evolution of the
dispersive continuum as well as the pulse parameters is followed.

4. Gain and intensity dynamics

On the long time scale, the evolution of the pulse energy is given by

dw
dT

= − w
τph(w)

+
2gw
TR

. (5)

While τph can be related to the parameters of an underlying physical model such as Eq. (1),
it is not useful to do so at this point. We note however thatτph includes nonlinear contribu-
tions from the fast saturable gain as well as linear contributions from the slow gain and loss.
Linearizing Eqs. (4) and (5) about equilibrium valuesgeq andweq, and using the relationship
1/τph = 2geq/TR, which comes from the equilibrium solution to Eq. 5, we find equations of
motion for the deviations from equilibrium

d∆w
dT

+Aww∆w+Awg∆g = 0,

d∆g
dT

+Agw∆w+Agg∆g =
∆g0

τ f
,

(6)

where Aww = (dτ−1
ph /dw)weq, Awg = −2weq/TR, Agw = (geq/τ f )(1/PsTR), and Agg = (1 +

weq/PsTR)(1/τ f ). All other Awx andAgx equal zero.
The abrupt change in pump power causes a sudden change in the unsaturated gain∆g0, lead-

ing to the damped oscillations shown in Fig. 1. The damping rate is given byα = (Aww +Agg)/2
and the oscillation frequency is given byω2

osc= −AwgAgw +AwwAgg −α2. We show measured
ωosc andα in Fig. 2 as a function of the pump power for both modelocked and continuous
wave (cw) operation. These values are obtained by explicitly solving Eq. (6) and fittingωosc

andα to the analytical form, shown in Appendix A, using the methodof least squares. As the
pump power varies between 4.7 and 5.4 W, we find that thatωosc varies from 2.6×106 rad/s to
2.8×106 rad/s andα varies from 0.2×106 s−1 to 1.0×106 s−1 for the modelocked operation.
The variation ofωosc in the cw case is qualitatively similar to the variation in the modelocked
case, but the variation ofα differs significantly, being far more gradual.

It is useful to rewrite Eq. (6) in terms of the photon numberNph = w/h̄ϖ and the number of
atoms in the upper lasing levelN2 = (V/σ lg)g, whereh̄ is Planck’s constant,V is the effective
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Fig. 2. Measured oscillation frequency (filled circles, left axis) and damping rate (open cir-
cles, right axis) as function of pump power for mode-locked (red) and cw (black) operation
of the laser.

gain volume,lg is the effective gain length, andσ is the gain cross section. We then find

d∆N2

dT
= −

(

1
τ f

+
1

τph

Nph,eq

N2,eq

)

(∆N2−∆N20)+
1

τph
∆Nph,

d∆Nph

dT
=

dτ−1
ph

dNph
∆Nph−

1
τph

Nph,eq

N2,eq
∆N2,

(7)

where∆N20 indicates the abrupt change inN2 corresponding to∆g0, andNph,eq andN2,eq in-
dicate the equilibrium photon number and upper state population, respectively. Ignoring the
damping contributions, we find that−AwgAgw = (1/τph)

2(Nph,eq/N2,eq), from which we obtain
the important result,

N2,eq

Nph,eq
=

1

−AwgAgwτ2
ph

= 13, (8)

where we used the experimental value for the cavity lifetimeτph = 0.1 µs, and we may infer
(−AwgAgw)1/2 ≃ 2.8×106 rad/s by using this value and showing that it produces the variation
of ωoscshown in Fig. 2. Usingweq= 55 nJ andϖeq= 2.3×1015 rad/s, we obtainNph,eq= 2.3×
1011 andN2,eq= 2.9×1012. Using the expressionAgg = (1/τ f )+(1/τph)(Nph,eq/N2,eq) and the
measured valueτ f = 2.5 µs, we findAgg = 1.2×106 s−1, and we also find thatAww = 2α −Agg

varies from−0.8×106 s−1 at a pump power of 4.7 W to 0.8×106 s−1 at a pump power of 5.4
W. We note that the laser remains stable whenAww becomes negative, although the relaxation
oscillations become long-lived. This behavior is very different from the cw behavior shown
in Fig. 2 and indicates that relaxation oscillations may be important in modelocked lasers even
when they are not important in the same laser generating cw light. Using(−AwgAgw)1/2 = 2.8×
106 rad/s and the relationshipω2

osc = −AwgAgw + AwwAgg −α2 implies thatωosc varies from
2.6×106 rad/s to 2.8×106 rad/s, consistent with Fig. 2. Using the relationAwg = −2weq/TR

and the measured valueweq = 55 nJ, we inferAwg = −11 Js−1 andAgw = 7.1×1011 J−1s−1.
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5. Frequency pulling

The frequency pulling shown in Fig. 1 is governed by the equation

d∆ϖ
dT

+Aϖw∆w+Aϖg∆g+Aϖϖ ∆ϖ = 0, (9)

whereAϖτ = Aϖθ = 0. We determine theAϖx from the experimental data by using the method
of least squares to fit the analytical form of the solution to Eq. (9), shown in Appendix A. We
find Aϖϖ = 1.2×106 s−1, Aϖg = −3.0×108 THz/s, andAϖw = 1.2×105 THz/(nJs) at 5.1 W
pump power.

The physical origin of the gain-induced frequency pulling is the finite bandwidth of the loss
[13]. As the gain changes, the equilibrium frequency changes and the pulse’s central frequency
is pulled toward the new equilibrium. The physical origin ofthe pulse-energy-induced fre-
quency pulling is asymmetry in the gain and loss. As the pulse’s energy changes, its bandwidth
also changes and the asymmetry then shifts the location of the equilibrium. Neither of these
effects are included in Eq. (1). We may include them in the limit that the pulse bandwidth is
small compared to the gain and loss bandwidths by adding a third order Taylor expansion of
the gain and loss profiles to Eq. (1). In the frequency domain,the gain ˜g(ω) and the loss̃l(ω)
become

g̃(ω) = g(0) +g(1)ω +
1
2

g(2)ω2 +
1
6

g(3)ω3,

l̃(ω) = l(0) + l(1)ω +
1
2

l(2)ω2 +
1
6

l(3)ω3,

(10)

whereω indicates the change in frequency with respect to the carrier frequencyω0, so that
the actual frequency is given byω0 + ω. The coefficientsg(m) and l(m) indicate themth

derivatives of the gain and loss with respect to frequency. With this expansion, the opera-
tor −l + g[1+ (1/Ω2

g)∂ 2/∂ t2] is replaced by[g(0) − l(0)] + i[g(1) − l(1)]∂/∂ t − (1/2)[g(2) −
l(2)]∂ 2/∂ t2− i(1/6)[g(3)− l(3)]∂ 3/∂ t3. Changes in the gain will produce an additional contribu-
tion of i∆g(1)∂/∂ t at lowest non-trivial order. Identifying(1/2)[g(2)− l(2)]≡Ω2

g, we see that we

are adding an additional perturbation to Eq. (1) of the formP[u] = i[g(1)− l(1)]∂u/∂ t − i[g(3)−
l(3)]∂ 3u/∂ t3 + i∆g(1)∂u/∂ t. Since our system is dispersion-managed, the pulses are nearly
Gaussian in shape. So, it is appropriate to use a perturbation expansion based on Gaussian-
shaped pulses. We show in Appendix B that

Aϖw = −3.23
TR

[

g(3)− l(3)
] 1

t4
FWHMweq

, Aϖg = −2.77
TR

g(1)

g(0)

1

t2
FWHM

, (11)

wheretFWHM is the full width half maximum pulse duration of 15 fs. Assuming with Haus
and Mecozzi [13] a nominal gain bandwidthΩg = 1.6×1015 rad/s and using the experimen-
tally determined value ofAϖg, we obtaing(1)Ωg/g(0) = 0.42, which is consistent with the loss
bandwidth peak lying below the gain bandwidth peak. Using the experimental value ofAϖw,
we also find[g(3) − l(3)]Ω3

g = −4.5, indicating a substantial asymmetry over the nominal gain
bandwidth. We note that these inferences are not unique, since they assume that higher orders
of the Taylor expansion of the gain and loss curves do not contribute. Nonetheless, these results
show that it is possible to infer corrections to Eq. (1) from the measurements ofA.

6. Conclusion

In summary, we have experimentally measured some elements in the matrixA that describes
the dynamics of the pulse parameters in a Ti:sapphire mode-locked laser. We have shown that it
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is necessary to take into account the gain dynamics and frequency pulling. Once that is done, it
is possible to measure all coefficients of the formAwx, Agx, andAϖx. One may use these results
to infer N2, which is needed to determine the strengths of the quantum noise sources. The
next step, measurement ofAτx andAθx, is underway. This information can be used with a full
perturbation theory for this system with realistic pulse shapes that take into account dispersion
management to yield a complete calculation of the entire line shape.

We thank Jun Ye for a critical reading of the manuscript. J.K.W. is supported by the National
Academy of Sciences/National Research Council postdoctoral fellows program. S.T.C. is a staff
member in the NIST Quantum Physics Division.

Appendix A. Solutions to Eqs. (6) and (9)

We may obtain the solution to Eq. (6) using the method of variation of parameters, assuming
that∆g0 changes instantaneously att = 0 to its final value. The solution is:

∆w =− Awg

ω2
osc+α2

∆g0

τ f

{

1− e−αT
[

cos(ωoscT )+
α

ωosc
sin(ωoscT )

]}

,

∆g =
Aww

ω2
osc+α2

∆g0

τ f

{

1− e−αT
[

cos(ωoscT )+
α

ωosc
sin(ωoscT )

]}

+
1

ωosc

∆g0

τ f
e−αT sin(ωoscT ),

(A.1)

which may be verified by substitution.
We obtain the solution to Eq. (9) by first substituting Eq. (A.1) into Eq. (9). We next rewrite

Eq. (9) in the form,

d∆ϖ exp(Aϖϖ T )

dT
=

(AϖwAwg −AϖgAww)

ω2
osc+α2

∆g0

τ f

×
{

exp(Aϖϖ T )−exp
[

−(α −Aϖϖ )T
]

cos(ωoscT )

− α
ωosc

exp
[

−(α −Aϖϖ )T
]

sin(ωoscT )

}

−Aϖg
1

ωosc

∆g0

τ f
exp
[

−(α −Aϖϖ )T
]

sin(ωoscT ). (A.2)

Definingᾱ ≡ α −Aϖϖ , we integrate this equation to obtain

∆ϖ =
(AϖwAwg −AϖgAww)

ω2
osc+α2

∆g0

τ f

{

1
Aϖϖ

[1−exp(−Aϖϖ T )]

− 1
ωosc

ω2
osc−αᾱ

ω2
osc+ ᾱ2 exp(−αT )sin(ωoscT )

− α + ᾱ
ω2

osc+ ᾱ2 [exp(−Aϖϖ T )−exp(−αT )cos(ωoscT )]

}

+Aϖg
1

ωosc

∆g0

τ f

{

ᾱ
ω2

osc+ ᾱ2 exp(−αT )sin(ωoscT )

− ωosc

ω2
osc+ ᾱ2 [exp(−Aϖϖ T )−exp(−αT )cos(ωoscT )]

}

. (A.3)
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Appendix B. Generalized Perturbation Theory

Perturbation analysis is a critical tool in the study of short-pulse lasers, and it has been applied to
a wide variety of problems [19]. A key difficulty with the workto date is that it uses traditional
soliton perturbation theory that assumes that at zero orderthe pulses are hyperbolic-secant
shaped. In fact, virtually all of today’s short-pulse lasersystems are dispersion-managed, and
the pulses are close to Gaussian shaped. Often, the traditional approach yields excellent agree-
ment between theory and experiment [27]. However, there arenotable exceptions, such as the
calculation of the carrier-envelope phase shift in which the traditional approach yields qualita-
tively incorrect answers. (Compare [9] and [10].) This approach is unreliable and an approach
that can incorporate the correct zero-order pulse shape is needed.

A key difficulty with developing perturbation theory for thepulses in dispersion-managed
systems is that a zero-order averaged equation is not generally available. Haus,et al. [28] pro-
posed an equation in which the time variable appears explicitly, but as Smith,et al. [29] first
pointed out, this equation does not scale correctly with thepulse energy. The explicit appear-
ance of the time variable breaks the physically-required zero-order time-invariance symmetry.
Hence, this equation is not suitable as the starting point for a perturbation analysis. Ablowitz
and Biondini [30] and Gabitov and Turitsyn [31] have derivedintegro-differential equations
that are non-local in time. These can be used as the basis for aperturbation theory. However,
they only apply when the map strength is large,i.e., the variation of the dispersion is large
compared to the average. Typically, the map strengths in laser systems are moderate, and the
ratio of the variation to the average is close to 1. Moreover,one would like to have an ap-
proach that can be applied to computational studies like those of Paschotta [25, 26] that take
into account the discreteness of the laser components. It isnot at all clear that it is possible to
obtain a closed-form zero-order equation in this case, while it is certainly possible to obtain
computationally the equilibrium pulse shape. In this case,one would like to be able to use the
computationally-determined pulse shape as the starting point for a perturbation analysis.

Here, we report that we have circumvented the difficulties just described and have devel-
oped a perturbation theory that allows one to use empirically- or computationally-derived pulse
shapes even when there is no closed-form expression for the underlying averaged equations, as
long as certain physical and mathematical assumptions — that are well supported by experi-
mental, computational, and theoretical work to date — are obeyed. We will not discuss all the
details here, reserving that for a later publication. However, all the assumptions that are used in
the theoretical development are presented here, and the development is complete, albeit brief.
Likewise, we do not give extensive examples of the theory’s application here. Instead, we show
how the apparatus of the theory can be used to extract the result on frequency pulling in the
main text, which is all that is needed for this paper.

We begin by assuming that we have model equations that governthe light evolution in
the cavity and are periodic in the folded timeT , i.e., TR∂u(T, t)/∂T = F [u(T, t)]. While
Eq. (1) is an example of just such a model, the computational model of Paschotta [25, 26]
is another example that consists of discrete portions concatenated together. We assume that
in the absence of gain and loss, the model equations have a stationary short-pulse solution
u0(T, t) that depends only on the four parametersw, ϖ , τ, andθ . Gain and loss are needed
to set the equilibrium values ofw and ϖ , and loss is needed to damp the continuum radi-
ation, but in the dispersion-managed soliton regime in which virtually all of today’s short-
pulse lasers operate, it is appropriate to treat these termsperturbatively. In addition, we will
assume that the underlying equations are time- and phase-invariant at zero order, so that
u0(T, t;w,ϖ ,τ,θ) = u0(T, t − τ;w,ϖ)exp(iθ). While it is not necessary for our development,
we will also assume that at zero order the underlying equations are frequency-invariant at zero
order. It is not difficult to find model systems with no gain or loss that violate this assumption. If
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higher-order dispersion for example is included in the zero-order system, then this assumption
is not valid. However, this assumption holds at zero order inthe dispersion-managed systems
that are of interest to us here, and we findu0(T, t) = u0(T, t − τ;w)exp[−i∆ϖ(t − τ) + iθ ],
where we have used the assumptionω0 = ϖeq.

If we now write u(T, t) = u0(T, t) + ∆u(T, t) and we linearizeF [u] about the equilibrium
(periodically stationary) solutionu0(T, t), we obtain a linear Bloch-Floquet equation with peri-
odically varying coefficients. Starting at any location in the laser, we may integrate this equation
over one round trip and divide byTR to obtain an averaged equation that governs the slow evo-
lution and that may be written in the form

∂∆u
∂T

= iM [u0]∆u+ iN [u0]∆u∗, (B.1)

whereM andN are operators that may be non-local in time. In the case of thenonlinear
Schr̈odinger equation with constant dispersion,M = (D/2)∂ 2/∂ t2+2γ|u0|2 andN = γu2

0. In
keeping with our assumption that the zero-order system has no gain or loss, we assume thatM

is a Hermitian operator andN is symmetric, by which we mean that given anyu(t) andv(t),
∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 v∗(t1)M (t1, t2)u(t2) =

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 u(t2)M

∗(t2, t1)v
∗(t1),

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 v∗(t1)N (t1, t2)u

∗(t2) =

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 u∗(t2)N (t2, t1)v

∗(t1). (B.2)

The connection to gain and loss of this assumption may not be entirely obvious to the reader,
and it will be elucidated elsewhere in a full discussion of perturbation theory. However, the
reader can easily verify that a vast number of equations withno gain and loss satisfy these
conditions once linearized, including all equations of practical interest known to the authors,
such as the nonlinear Schrödinger equation, the Ablowitz-Biondini equation [30] that governs
dispersion-managed solitons, and the equation proposed byHaus,et al. [28]. Equations with
any order of dispersion and arbitrary (non-singular) nonlinearities,i.e., |u|2u → F [|u|2]u, also
satisfy these conditions once linearized.

We now define an inner product〈v|u〉 = (1/2)
∫ ∞
−∞ dt (v∗u + vu∗) and note that ifu satisfies

Eq. (B.1), thenv = iu satisfies the dual equation

∂v
∂T

= iM [u0]v− iN [u0]v
∗. (B.3)

Any solution to Eq. (B.1) may be written∆u = uw∆w + uϖ ∆ϖ + uτ ∆τ + uθ ∆θ + ∆uc, where
ux = ∂u0/∂x, x = w, ϖ , τ, or θ , and∆uc is a dispersive wave continuum. We first have the
important result that since theux satisfy Eq. (B.1),vx ≡ iux must satisfy the dual equations.
Second, we may show〈vx|∆uc〉 = 0, using an approach that is analogous to the approach used
in traditional soliton perturbation theory [32]. Thus by operating with the four〈vx| on any
perturbed equation, we may find the effect of the perturbation on the four soliton parameters,
just as in traditional soliton perturbation theory.

Given an arbitrary pulse shapeu0, the 〈vx|uy〉 are non-zero in general for all combinations
of x andy. However, in the special case in which the pulses are symmetric aboutt − τ and are
entirely in one phase — as is the case for both standard and dispersion-managed solitons at
their point of minimum compression — then we find〈vx|uy〉 = 0 whenx 6= y. In practice, the
point of minimum compression is arranged to be at the exit mirror of the laser, so that is the
point at which the pulses are observed.

We now apply this general theoretical apparatus to Gaussian-shaped pulses, which com-
putational and experimental studies have demonstrated is an excellent approximation to the
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true pulse shape. In principle, we could also use the exact, computationally-determined pulse
shapes. We consider the perturbations that lead to frequency pulling,

P[u] = i
[

g(1) − l(3)
] ∂u

∂ t
− i

6

[

g(3)− l(3)
] ∂ 3u

∂ t3 + i∆g(1) ∂u
∂ t

. (B.4)

The equilibrium pulse shape is given byu0(t) = Aexp
[

−(t − τ)2/2t2
p

]

exp[−i∆ϖ(t − τ)+ iθ ].
We must now relateA andtp to the pulse energyw. Here, we may appeal to the computationally-
determined relations [33, 34] in a system with two dispersive media of lengthsL1 andL2 with
dispersionsβ ′′

1 andβ ′′
2 and an average dispersionβ ′′

av = (β ′′
1 L1+β ′′

2 L2)/(L1+L2). It was shown
that w = (r/tp)(1+ s/t4

p), wherer = 2|β ′′
av|(L1 + L2)/γ and s = 0.09|(β ′′

1 − β ′′
av)L1 − (β ′′

2 −
β ′′

av)L2|2 [33, 34]. We also havew =
√

πA2tp, which allows us to relateA to w. We now find,

uw =
1
w

[

C1(tp)−C2(tp)
(t − τ)2

t2
p

]

u0(t), uϖ = −i(t − τ)u0(t),

uτ =
t − τ

t2
p

u0(t), uθ = iu0(t),

(B.5)

along with the duals,

vw = 2u0(t), vϖ = −2i
w

t − τ
t2
p

u0(t),

vτ =
2
w

(t − τ)u0(t), vθ =
2i
w

[

C1(tp)−C2(tp)
(t − τ)2

t2
p

]

u0(t),

(B.6)

where

C1(tp) =
1+3s/t4

p

1+5s/t4
p
, C2(tp) =

1+ s/t4
p

1+5s/t4
p
. (B.7)

The duals are chosen so that〈vx|ux〉 = 1. Operating onP[u0] with 〈vϖ |, we obtain

TR
d∆ϖ
dT

=
[

g(1) − l(1)
] 1

t2
p

+
1
4

[

g(3)− l(3)
] 1

t4
p

+
∆g(1)

t2
p

. (B.8)

Because of the modelocked pulse’s finite bandwidth and the assumed asymmetry of the gain,
which appears in the third-derivative term, the pulse will not reside at the peak of the combined
gain-loss curve, and its derivative is not zero whenω = 0. In order to enforce the condition that
d∆ϖ/dT = 0 at equilibrium, we must set[g(1) − l(1)] = −[g(3) − l(3)]/4t2

p,eq, from which we
find

TR
d∆ϖ
dT

=
1

4t2
p

[

g(3) − l(3)
]

(

1
t2
p,eq

− 1
t2
p

)

+
∆g(1)

t2
p

=
1

2t5
p

[

g(3) − l(3)
]

∆tp +
∆g(1)

t2
p

.

(B.9)

Finally, using the relations∆tp = (dtp/dw)∆w = −[(tp/w)(1+ s/t4
p)/(1+5s/t4

p)] and∆g(1) =

(g(1)/g(0))∆g, we conclude

Aϖw = − 1
2TRt4

p

[

g(3) − l(3)
] 1+ s/t4

p

1+5s/t4
p
, Aϖg = − 1

TRt2
p

g(1)

g(0)
. (B.10)
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To arrive at the expressions in the main text, we substitutetp = tFWHM/[2
√

ln2] = 0.6006tFWHM.
Using the expression from [33],s/t4

p = 0.7|(β ′′
1 −β ′′

av)L1− (β ′′
2 −β ′′

av)L2|2/t4
FWHM, as well as

the result from [35] that fortFWHM = 15 fs, we have|(β ′′
1 −β ′′

av)L1− (β ′′
2 −β ′′

av)L2| = 60 fs2,
we finds/t4

p = 0.05 and(1+ s/t4
p)/(1+5s/t4

p) = 0.84.
We note that if the traditional perturbation theory is used,the coefficient 3.23 in the expres-

sion forAϖw becomes 3.00 and the coefficient 2.77 in the expression forAϖg becomes 2.07. So,
as is often the case, the traditional theory agrees well withthe generalized approach described
here. However, there is no compelling reason to use the traditional approach. The generalized
approach is no more difficult to apply than the traditional approach and makes use of the true
zero-order pulse shapes with whatever exactitude the problem at hand requires.
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